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Informing Snake Roadkill Mitigation
Strategies in Taiwan Using Citizen Science
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ABSTRACT Despite their prevalence in roadkill in East Asia, there has been little research on snake
mortality along roads, even though the region’s fauna contains some of the highest proportions of threatened
or data-deficient reptiles. We analyzed citizen-collected roadkill data from Taiwan, comprising >11,000
records of snake roadkill from 2006–2017. We used maximum entropy environmental niche modeling to
predict roadkill sighting patterns across snake species differing in habitat use, foraging behavior, and
taxonomic group. Roadkill sightings were highest in low to mid-elevation (i.e., 0–2,000m) forests and strips
of farmland or shrubland that cut through forests; these areas likely support high snake abundances or
dispersal activity. Sightings were lowest in urban areas and at high elevations (i.e., >2,000m), likely because
of unfavorable habitat conditions. Road density had little influence on roadkill sightings; areas with dense
roads may be of lower habitat quality and contain fewer snakes. Roadkill sighting patterns differed among
snake species with different habitat use and behavior. Natural history and landscape factors should be
considered in roadkill mitigation design to reduce snake roadkill effectively. We recommend the use of
similar citizen-science projects elsewhere to supplement conservation planning. � 2018 The Wildlife
Society.
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Road development has proliferated globally since 2000, and
is projected to continue expanding this century, with �25
million km of new roads planned by 2050 (Laurance et al.
2014). Most of this expansion is expected to occur in Asia,
which is forecasted to have massive infrastructure develop-
ment (especially hydropower, rail, and subway systems, and
roads), and to contain nearly half of global urban expansion
to meet the demands of an ever-growing population (Seto
et al. 2012, Schmitz et al. 2013, Zarfl et al. 2015). China
currently has the world’s largest car market and ownership,
and is projected to have a 3 million km highway network by
2020 (KPMG2009). Road expansion is often interconnected
with other infrastructure projects that will further fragment
the region’s natural landscapes.
Roads are considered a significant contributor to the global

biodiversity crisis (Eigenbrod et al. 2009, van der Ree et al.
2011, Laurance et al. 2014), causing direct mortality from
vehicle collision (Grilo et al. 2009), impeded dispersal and
gene flow (Balkenhol and Waits 2009), habitat loss or
degradation (Coffin 2007), and spread of invasive species
(Gelbard and Belnap 2003). Roads are also catalysts for

future roads, and promote human access, hunting, poaching,
fires, and deforestation (Adeney et al. 2009, Laurance et al.
2009). Roads can even cause more wildlife mortality than
hunting (Forman and Alexander 1998), illegal wildlife trade
(Andrews et al. 2008), or predation (Bujoczek et al. 2011).
Among the animals most susceptible to roadkill are snakes
(Andrews et al. 2008), predominantly because of their
attraction to warm road surfaces for thermoregulation
(Mccardle and Fontenot 2016), the availability of certain
prey along roads (Andrews et al. 2008), the immobilizing
behavior of some species in response to oncoming traffic
(Andrews and Gibbons 2005), and intentional killing by
humans when snakes are seen on roads (Secco et al. 2014).
To understand and formulate recommendations to reduce
road mortality, several studies have investigated factors
thought to influence snake roadkill, including proximity to
water or wetlands (Langen et al. 2009, D’Amico et al. 2015,
Seo et al. 2015), proximity to agriculture (GonScalves et al.
2018), elevation (Pragatheesh and Rajvanshi 2013), roadside
vegetation (Jochimsen 2005), temperature (D’Amico et al.
2015), season (Seo et al. 2015), and species size and
taxonomic affiliation (Andrews and Gibbons 2005).
Most studies on the road ecology of snakes are from the

Americas, and research on snake roadkill in East Asia is
lacking. East Asia contains a considerable proportion of
threatened or data-deficient reptiles as listed by the
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International Union for Conservation of Nature (IUCN;
B€ohm et al. 2013); therefore, road development plans could
be especially disastrous for the region’s snake species. To
date, only 1 paper has investigated the underlying factors of
roadkill for a single snake species in East Asia (Seo et al.
2015). There is an urgent need for more comprehensive
research on snake road ecology in East Asia to reduce
mortality caused by the region’s ambitious road expansion
plans in the coming century.
Because of the variety of climate and ecological zones,

Taiwan supports a diversity of snakes, with>50 species from
7 families, though ecological information on many snake
species is still lacking (Lee 2005, Hsiang et al. 2009). We
analyze roadkill data since 2006 from a citizen-science
project in Taiwan. Our goal was to identify areas of high
snake roadkill sightings in Taiwan; investigate how
landscape and land cover type correlate with roadkill
sightings in relation to snake behavior, habitat use, and
taxonomic group; and provide recommendations for snake
roadkill mitigation strategies. We hypothesized that roadkill
sightings would vary depending on land cover type
(Clevenger et al. 2003, Pragatheesh and Rajvanshi 2013,
Seo et al. 2015), and may be higher in forests at low to mid
elevations (i.e., 0–2,000m) because more snakes occur in this
environment relative to other areas in Taiwan (Hsiang et al.
2009). We predicted that sightings would increase with road
density because of higher traffic (Fahrig and Rytwinski
2009).We also hypothesized that roadkill sightings would be
higher for active foraging species compared with ambush
species, which are less mobile, and higher for semi-arboreal
and terrestrial species compared with aquatic and fossorial
species, which have more restricted habitat requirements
(Hartmann et al. 2011, Quintero-�Angel et al. 2012).

STUDY AREA

Taiwan (218550–258200N, 1198300–1228000E) is a seismi-
cally active island on the Tropic of Cancer. Around 58% of
the island (36,200 km2) is forest, half of which is broadleaf
forest, and the other half coniferous or mixed forest. Vast
areas of low elevation forests, representing around 30% of
Taiwan’s area, have been converted to agriculture, and
remaining forests are limited to remote and steep moun-
tainous regions or protected areas. Around 75% of Taiwan’s
land mass is mountainous, and the core of these mountains,
known as the Central Ridge, run north to south along the
central interior, and includes peaks >3,000m above sea level
(Lee 2007).
Taiwan’s climate is strongly governed by altitude and

latitude. The north is subtropical, with a mean annual
temperature of 228C and occasional frost events in the
winter, whereas the south is tropical, with a mean
temperature of 248C and no frost (Li et al. 2013). Summer
(Jun–Aug) is hot and humid and winter (Dec–Feb) in
northern Taiwan is cool and dry. The central interior offers a
cool, temperate climate because of the increased altitude.
Taiwan generally experiences a noticeable dry and wet
season, except for the northeast, which is regularly exposed to
monsoons, and the central mountains, especially areas

>1,500m, where there is constant mist and precipitation
(Li et al. 2015). The wide range in climate, altitude, and
vegetation types gives Taiwan a notable amount of
biodiversity. Taiwan has around 48,000 species of plants
and animals (Shao 2011), including 110 species of reptiles
(53 snake species), a quarter of which are endemic.

METHODS

Data Collection
We used data collected from the Taiwan Roadkill
Observation Network (roadkill.tw, accessed 01 Sep 2017),
a citizen science project that has recorded >40,000 roadkill
sightings and other animal mortality incidents throughout
Taiwan since 2004. It is run by the Taiwan Endemic Species
Research Institute and Institute of Information Science, and
its main goals are to mitigate roadkill, and promote citizen
science, environmental education, and appreciation of
biodiversity. Once a roadkilled animal is spotted, the
contributor can record the time and global positioning
system (GPS) location, take a photo, and submit the
information online or via a mobile app (roadkill.tw/
download/app, accessed 01 Sep 2017). For all incidents,
species identification is verified by project staff through the
submitted photos; we are therefore confident in the accuracy
of species reports. Records are then published on the
network’s website as open-source data. For our analysis, we
used only records of roadkilled snakes that had GPS and date
recorded, and identification to at least the family level.
Although the program started in 2004, the number of
records were fewer in the early years because the program was
less known, and may not accurately reflect snake roadkill
composition; hence, we used only records from 2006 to 2017
when the program was more widely used, annual sample sizes
were high, and inter-annual variation in observation number
and composition was minimal. We excluded data from
Taiwan’s outlying islands, which may have considerably
different traffic patterns and snake assemblages compared to
the mainland.

Predictor Variables
To investigate spatial patterns of snake roadkill, we selected
variables that we believed encompassed the environmental
variation in Taiwan with the most explanatory power. We
included latitude, elevation, and slope (Environmental
Systems Research institute [ESRI], Redlands, CA, USA;
Terrain image service, 30-m resolution) because these
determine the climate of Taiwan. Latitude determines
whether the lowlands in Taiwan experience a subtropical or
tropical climate, whereas areas of high elevation, such as the
central mountains, provide a temperate climate. Steep areas
generally remain undeveloped and are colder and wetter
compared to flatter areas, most of which have a drier, hotter
climate and have been anthropogenically disturbed.
We also included land cover variables as derived from

BaseVue 2013 (MDA Information Systems, Gaithersburg,
MD, USA; 30-m resolution), currently the highest resolu-
tion land cover map for the whole of Taiwan. Our land cover
categories included evergreen forest (stands of trees >3m
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high, 35% canopy closure, composed of species that do not
seasonally shed leaves), shrub (woody vegetation<3m high),
grassland (>10% cover in herbaceous grasses), barren land or
minimal vegetation (<10% vegetative cover), paddy agricul-
ture (croplands inundated for most of the growing season),
general agriculture (other croplands), water (all bodies of
water >0.08 ha, including ponds, rivers, and streams), high-
density urban areas (areas where constructed materials
including asphalt, concrete, buildings, and infrastructure
formed >70% of land cover), and low-density urban areas
(areas with 30–70% land cover of constructed materials).
Traffic data were not available so we included road density
(km of road/km2 area) as a variable to correct for any
sampling bias because more roads should be correlated with
more traffic and a higher sampling effort by a citizen science
project (Fahrig and Rytwinski 2009, Mair and Ruete 2016).
We tested for multicollinearity between all predictor

variables using the Pearson correlation coefficient (r) and
excluded variables with high cross-correlation values (|r|>
0.8). Because the effects of land cover may vary at different
spatial scales, we tested buffers of 3 different radiuses (100m,
500m, and 1,000m) to quantify the proportion of each land
cover type surrounding each cell (Langen et al. 2009). To
determine the best spatial scale to use, we initially ran 3
models on all snake roadkill records using the proportion of
land cover within either a 100-m, 500-m, or 1,000-m radius
as variables. We then compared the models using the area
under the receiver operating characteristic curve (AUC) and
the sample size corrected Akaike’s Information Criterion
(AICc; Warren and Seifert 2011).

Data Analysis
Analysis of citizen science datasets usually requires modeling
algorithms for presence-only data because absences are not
recorded. Though a variety of options are available (e.g.,
boosted regression trees, environmental niche factor analysis,
random forest; Garc�ıa-Callejas and Ara�ujo 2016, Shabani
et al. 2017), we used one of the most robust and widely used
methods, maximum entropy (MaxEnt) models, to correlate
spatial variables with roadkill reports (Phillips et al. 2006,
Elith et al. 2011, Duque-Lazo et al. 2016). MaxEnt is a
machine-learning approach that optimizes species-environ-
ment associations using multiple function types including
quadratic and product functions (Merow et al. 2013) and is
thus especially useful in mapping ecological phenomena that
may have complex, non-linear correlations, such as roadkill
patterns. It has been shown to outperform alternative
methods especially when there is a sufficient sample size and
wide species distribution (Kasampalis et al. 2013, Duque-
Lazo et al. 2016), and has been used in analyzing citizen
science data (Crall et al. 2015, Fournier et al. 2017) and
mapping roadkill hotspots (Ha and Shilling 2017, Garrote
et al. 2018). Because absence data are unavailable, MaxEnt
compares presence points with a sample of points, known as
background or pseudo-absence points, from the study area of
interest. It assumes that the unknown probability distribu-
tion has maximum entropy while subject to the constraints of
predictor variables (Jaynes 1982) and its optimization is

mathematically equivalent to generalized linear models
(Renner and Warton 2013). To analyze which and how
spatial factors influence snake roadkill sightings in Taiwan,
we ran models usingMaxEnt 3.4.1 (Phillips et al. 2006) with
a convergent threshold of 0.00001, maximum iteration of
500, regularization of 1, and 10,000 maximum background
points. To reduce overfitting, we cross-validated each model
10-fold. We estimated the percentage contribution of each
variable to the regularized gain of the model and verified it
with jackknife analysis. An important consideration in
analyzing citizen-science, presence-only data is the potential
of sampling bias and spatial autocorrelation (Yackulic et al.
2013). To account for these potential biases, in addition to
including road density as a variable, we restricted the
sampling area of MaxEnt to the road network of Taiwan so
pseudo-absence points were selected on roads only (Merow
et al. 2013). Further, we checked for spatial autocorrelation
by running a Moran’s I test (Moran 1950) on the model
residuals.
To compare the relationships of environmental variables on

snakes differing in biological traits or taxonomic group, we
ran the MaxEnt models on subsets of the roadkill data. We
categorized the data based on species’ habitat use, foraging
behavior, and family (Hsiang et al. 2009, Das 2015). Habitat
use refers to a snake’s adaption to a specific microhabitat and
has been widely used to categorize snakes (Sheehy et al.
2016). For habitat use, we included arboreal (i.e., species that
spend most of their time in vegetation and usually have
prehensile tails, such as the square-headed cat snake [Boiga
kraepelini], bamboo viper [Trimeresurus stejnegeri], and slug
snakes [Pareas spp.]), semi-arboreal (i.e., species that spend
similar times in vegetation and on ground, such as the greater
green snake [Cyclophiops major], beauty snake [Orthriophis
taeniurus], and rat snakes [Ptyas spp.]), terrestrial (i.e., species
that often occur on the ground, including the many-banded
krait [Bungarus multicinctus], red-banded snake [Lycodon
rufozonatus], and habu viper [Protobothrops mucrosquamatus]),
fossorial (i.e., species that often occur underground, under
leaf litter, or in crevices, such as the collared reed snake
[Calamaria pavimentata], odd-scaled snakes [Achalinus spp.],
and coral snakes [Sinomicrurus spp.]), and aquatic snakes (i.e.,
species that live in or near water and feed mostly on aquatic
prey, such as the eastern water snake [Sinonatrix
percarinata] and checkered keelback [Xenochrophis piscator];
Table S1). We divided foraging behavior into ambush
species, which are often sedentary for days and tend to
remain still in response to oncoming traffic, and active-
hunting species, which have higher movement rates but are
likely to move rapidly in response to oncoming traffic; these
differences might have implications for roadkill (Hartmann
et al. 2011).

RESULTS

The screened data from the Taiwan Roadkill Observation
Network contained 11,287 records from 2006 to 2017 and
consisted of observations of 36 snake species from 6 families.
The 5 most frequently sighted species in roadkill, in
descending order, were the greater green snake, an active,
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semi-arboreal species (14.89%); the habu viper, an ambush,
terrestrial species (10.54%); the square-headed cat snake, an
active, arboreal species (9.30%); the red-banded snake, an
active, terrestrial species (7.92%); the many-banded krait, an
active, terrestrial species (7.91%); and the bamboo viper, an
ambush, arboreal species (6.33%; Table S1).
Wefoundthat the1,000-mscalehad thebestfit (i.e., it had the

highestAUCand lowestAICc), soweused thepredominanceof
each land cover type within a 1,000-m radius buffer of the road
network as variables for subsequent analyses. None of the
environmental variables were highly correlated (|r|<0.8) so we
included all variables in subsequent analyses. Spatial autocorre-
lation across the whole dataset was minimal (Moran’s I¼ 0.11)
but significant (P< 0.05), though significance is notunexpected
because of our large sample size.Elevation andpredominance of
evergreen forest and agriculture within a 1,000-m road buffer
made the largest contributions to explaining thepattern in snake
roadkill sightings, contributing 34.1%, 29.5%, and 16.6% to the
data, respectively; slope and predominance of urban landscapes,
grasslands, barren lands, andwatermadealmostno contribution
(<1%; Table 1). We calculated percentage contribution as the
change in regularized gain of the model with inclusion of a
particular variable to indicate the predictive power of the
variable.Theoverallmodelhad anAUCvalueof 0.642,whereas
the subset models based on habitat use, foraging behavior, and
family generally had higher AUC values (�0.7–0.9; Table 1).
TheAUCvalue indicatesmodel performance; anAUCvalue of
>0.5 indicates better performance than random, and a value of
0.8 would be considered fair performance. For all roadkill
sightings combined, the mean predominance of land cover
within 1,000m was around 50% forest cover, 10–20%
agriculture or shrublands, and 0.6–2% grasslands or urban
areas (Table S2).
Roadkill sightings generally occurred on roads located in

low- to mid-elevation (i.e., 0–2,000m) forests or forest edges
(Fig. 1). Of the 13 variables included in models, elevation
and predominance of evergreen forest cover were repeatedly
in the top 3 contributing variables explaining patterns in
roadkill sightings, whether records were grouped by snake
habitat use, foraging behavior, or family (Table 1). Either
predominance of general agriculture or paddy agriculture was
also in the top 3 for most groupings. Notably, predominance
of general agriculture contributed substantially to models of
roadkill patterns of semi-arboreal, terrestrial, and active
snakes, whereas paddy agriculture played a greater role for
arboreal, fossorial, and ambush snakes. The marginal
response curves, in which each environmental variable was
varied while keeping other variables at the average value,
showed that predominance of evergreen forest generally had
a positive correlation, elevation had a negative correlation,
and predominance of agriculture had varying non-linear
associations with roadkill sightings, depending on a species’
habitat use, foraging behavior, or family (Fig. 2).

DISCUSSION

East Asia is one of the most rapidly developing regions in the
world and is projected to undergo some of the highest rates of
urban, infrastructure, and road expansion this century

(KPMG 2009, Seto et al. 2012, Zarfl et al. 2015). Because
snakes are one of the most susceptible animals to roadkill,
high amounts of snake mortality may occur in East Asia in
concert with road expansion unless adequate mitigation
measures are in place. We examined snake roadkill
observation patterns in Taiwan and found that roadkill
sightings were largely associated with elevation, land cover
type, and ecological preferences of snake species. An
understanding of snake roadkill in East Asia is urgently
needed to develop effective mitigation strategies amid the
proliferation of roads, and our study is an important start to
filling this knowledge gap.
Snake roadkill sightings were highest in areas between

low to mid elevation forests, and to a lesser extent, some
agricultural areas adjacent to forests (Fig. 1, Table S2).
Thus, elevation and predominance of evergreen forest
made large contributions toward explaining roadkill
sightings (Table 1). The high roadkill sightings in these
locations likely reflect high snake abundance and traffic
density. Forests in Taiwan contain high snake diversity
and abundance (Hsiang et al. 2009) and traffic density at
low to mid elevations is relatively high, together producing
a higher chance of roadkill. Roadkill sightings were low
along the tall mountain ranges of Taiwan’s central interior,
likely because of the low road and traffic density and the
colder, more extreme climate, which is unfavorable for
many snakes; only a few montane species can be found
regularly in Taiwan’s highest mountains (Huang et al.
2007). Urban areas also had low snake roadkill sightings,
even though they contain the highest road and traffic
density. This is likely because there are very few snakes in
or near urban areas because of high human disturbance and
inhospitable conditions (Clevenger et al. 2003). The only
exception was Typhlopids (notably, the brahminy blind
snake [Ramphotyphlops braminus]), where the number of
roadkill sightings was strongly and positively correlated
with predominance of urban areas (Table 1). The
brahminy blind snake is the world’s only parthenogenetic
snake, so the species is an efficient colonizer (often via
human introduction) and can be common in urban
environments (Nussbaum 1980). Perhaps the abundance
of blind snakes is comparable or even higher near urban
centers versus more natural areas, which explains the
increased probability of observing roadkills there. Road
density itself had minimal influence on roadkill sightings,
relative to other variables (Table 1). This may be because
areas of high road density are associated with greater
anthropogenic disturbance and contain fewer snakes.
Alternatively, snake populations could be previously
depressed near old, high traffic roads, even in favorable
land cover types (Teixeira et al. 2017).
Environmental variables had differing relationships with

snake roadkill sightings depending on species’ habitat use,
foraging behavior, and family. This variation was related to
the different niche requirements of the different snake
categories. For example, predominance of paddy agriculture
had a particularly strong negative correlation with roadkill
sightings of arboreal and fossorial snakes (Table 1); such
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snakes are likely in low abundance in paddy fields because of
unsuitable habitat conditions. Arboreal snakes require woody
vegetation, whereas fossorial snakes require dry burrowing
substrate, but paddy fields are too open and often inundated.
Elevation had a negative relationship with roadkill sightings
of active snakes but a positive one for ambush snakes (Fig. 2).
This is likely because most of the cold-tolerant snakes of
Taiwan are ambush species (Hsiang et al. 2009), and are
physiologically capable of inhabiting cooler, high-elevation
forests (Huang et al. 2007).
Though predominance of evergreen forest cover within a

1,000-m buffer from roads generally had a positive
correlation with snake roadkill sightings, the relationship
peaked at around 80–95% forest cover and dropped near
100% cover (Fig. 2), suggesting that roadkill may not be
highest in forest interiors but near forest edges or
transitional areas between forest and shrubland or farmland.
This might be because there is less traffic and fewer roads in
forest interiors or because of higher snake movement at
transitional areas to travel between forested areas. We
report high frequencies of roadkill sightings along valleys of
grassland and shrubland that penetrate the central forests of
Taiwan, and also along the large strip of farmland that
fragments forests along the east coast (Fig. 1). This suggests
that, although the presence of large areas of grassland,
shrubland, or farmland per se do not contribute to roadkill
sighting patterns (e.g., along the west coast), if they are
surrounded by forests, these areas might act as dispersal
corridors between forest patches, resulting in high amounts
of roadkill. Previous studies reported that periods of
frequent movement of snakes, such as during juvenile
dispersal or the mating season, lead to increased road
mortality (Bonnet et al. 1999, Seo et al. 2015). However,
size, sex, and age were not recorded in our dataset, so this
possibility remains untested. Our dataset does include dates,
so the relationship between roadkill timing and breeding
cycles could potentially be examined, though at present,

there are no empirical data on the dispersal patterns of any
snake in Taiwan, and only data on the reproductive biology
of 1 species (Tsai and Tu 2001).
We acknowledge limitations to our study. First, roadkill

sighting patterns could reflect habitat preference of the snakes,
roadkill risk, or both. For example, high roadkill records of
arboreal snakes in forest could be because there are more
arboreal snakes in forests or because of high risk of roadkill in
forests for arboreal snakes, though we could not differentiate
among these factors given the availabledata.Our results donot
reflect actual roadkill probability but rather the probability of
roadkill sightings, which is affected by detectability factors.
Juveniles or smaller species are more likely to be missed or are
scavenged completely (Santos et al. 2011). Size was not
recorded in our dataset, but we generally found fewer roadkill
sightings for smaller species, though most of these snakes are
also rare and fossorial (Table S1). Scavenging of roadkill
carcasses will deflate roadkill estimates (DeGregorio et al.
2011, Santos et al. 2016), andmay also explain the lownumber
of roadkill sightings in interior forests of Taiwan, where we
presume scavenger numbers are highest, though scavenger
density in Taiwan has not been investigated. Potential
scavengers in Taiwan include corvids, some raptors, and
mustelids.Moreover, high traffic volume and road speed affect
the sampling effort and can increase the decomposition rate
and the chance of a missed carcass (Santos et al. 2016).
Unfortunately, traffic information was also unavailable, so we
included the best alternative, road density, as a variable. We
found that spatial autocorrelation was negligible, but we
acknowledge thatwecouldnot correct for samplingeffort fully.
This is a common problem for many opportunistic citizen
science projects because sampling effort is not recorded or
controlled (Isaac et al. 2014).
Our study is a first step in understanding snake roadkill in

East Asia. New roads are already being built at unprecedented
rates, and more roadkill studies in Asia are needed for other
taxa, especially amphibians, which are very susceptible to

Figure 1. A) Probability of snake roadkill sightings from 2006–2017 across the road network of Taiwan overlaid on the elevationmap of Taiwan.We calculated
probability using all environmental predictors and 10-fold cross validation in MaxEnt. B) BaseVue 2013 30-m resolution land cover map of Taiwan.
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roadkill and environmental change (Glista et al. 2008), and for
other areas because roadkill patterns seem to be area-specific
(Pragatheesh and Rajvanshi 2013, Seo et al. 2015). An
important next step is to perform applied studies in Asia,
testing the effectiveness of different mitigation methods such
as drift fences, culverts, bridges, or other wildlife passages
(Patrick et al. 2010,Ascens~ao et al. 2013,D’Amico et al. 2015).

There are currently no such studies inAsia, but ameta-analysis
of the success ofmitigationmeasures in other regions reported
that fences are more effective than passages, and the
combination of both is the most effective (Rytwinski et al.
2016). Finally, citizen-reported roadkill databases have been
reported to be accurate for information on location and
identification (Ha and Shilling 2017, Waetjen and Shilling
2017, P�eriquet et al. 2018), and we recommend their further
use in wildlife conservation and management. However, most
citizen science roadkill projects are based in temperate areas,
such as Belgium (http://waarnemingen.be), the Czech
Republic (http://srazenazver.cz/en/), Ireland (http://biology.
ie), and theUnitedStates (http://wildlfecrossing.net).As such,
weencourage conservationgroups in tropical regions to initiate
and use similar projects because these regions contain high
proportions of threatened and understudied taxa that could be
especially vulnerable to ongoing human developments.

MANAGEMENT IMPLICATIONS

To reduce snake roadkill in Taiwan, we recommend adding
mitigation (e.g., fences and passages) with priority given to
roads in low to mid-elevation forests, followed by roads in
forest edges and strips of farmland or shrubland that
fragment forests. Our models that focused on snakes with a
particular habitat use or behavior performed better (i.e., had
a higher AUC value) compared with the overall model for
all snakes, suggesting that one general mitigation strategy
may not be effective for all species. Mitigation should be
placed in multiple land cover types to reduce roadkill of
various snake groups; for example, roadkill of aquatic and
terrestrial snakes would be effectively reduced by also
placing mitigation measures in farmlands, in addition to
forests. We caution that our results from Taiwan should
only be extrapolated to areas with similar climate and taxa,
such as southern China and Japan, because roadkill patterns
may vary for different snake species and geographical
locations. Because we found that the spatial configuration of
land cover types and the locations of potential dispersal
corridors were important determinants of roadkill sightings,
for future roadkill studies, we recommend against using just
the land cover type at the roadkill location or the shortest
distance to a particular land cover type as predictor variables
because these variables do not incorporate the spatial
configuration of land cover; instead, we suggest looking at
the percentage of land cover within a wide buffer of the road
network.
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